Ultrafast carrier thermalization and trapping in silicon-germanium alloy probed by extreme ultraviolet transient absorption spectroscopy
نویسندگان
چکیده
Semiconductor alloys containing silicon and germanium are of growing importance for compact and highly efficient photonic devices due to their favorable properties for direct integration into silicon platforms and wide tunability of optical parameters. Here, we report the simultaneous direct and energy-resolved probing of ultrafast electron and hole dynamics in a silicon-germanium alloy with the stoichiometry Si0.25Ge0.75 by extreme ultraviolet transient absorption spectroscopy. Probing the photoinduced dynamics of charge carriers at the germanium M4,5-edge (∼30 eV) allows the germanium atoms to be used as reporter atoms for carrier dynamics in the alloy. The photoexcitation of electrons across the direct and indirect band gap into conduction band (CB) valleys and their subsequent hot carrier relaxation are observed and compared to pure germanium, where the Ge direct [Formula: see text] and Si0.25Ge0.75 indirect gaps ([Formula: see text]) are comparable in energy. In the alloy, comparable carrier lifetimes are observed for the X, L, and Γ valleys in the conduction band. A midgap feature associated with electrons accumulating in trap states near the CB edge following intraband thermalization is observed in the Si0.25Ge0.75 alloy. The successful implementation of the reporter atom concept for capturing the dynamics of the electronic bands by site-specific probing in solids opens a route to study carrier dynamics in more complex materials with femtosecond and sub-femtosecond temporal resolution.
منابع مشابه
Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium
Understanding excited carrier dynamics in semiconductors is crucial for the development of photovoltaics and efficient photonic devices. However, overlapping spectral features in optical pump-probe spectroscopy often render assignments of separate electron and hole carrier dynamics ambiguous. Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin films are directly and sim...
متن کاملCharacterization of Photo-Induced Charge Transfer and Hot Carrier Relaxation Pathways in Spinel Cobalt Oxide (Co3O4)
The identities of photoexcited states in thin-film Co3O4 and the ultrafast carrier relaxation dynamics of Co3O4 are investigated with oxidation-state-specific pump−probe femtosecond core level spectroscopy. A thin-film sample is excited near the 2.8 eV optical absorption peak, and the resulting spectral changes at the 58.9 eV M2,3edge of cobalt are probed in transient absorption with femtosecon...
متن کاملTracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales.
Direct and inverse Auger scattering are amongst the primary processes that mediate the thermalization of hot carriers in semiconductors. These two processes involve the annihilation or generation of an electron-hole pair by exchanging energy with a third carrier, which is either accelerated or decelerated. Inverse Auger scattering is generally suppressed, as the decelerated carriers must have e...
متن کاملUltrafast Charge Carrier Recombination and Trapping in Hematite Photoanodes under Applied Bias
Transient absorption spectroscopy on subpicosecond to second time scales is used to investigate photogenerated charge carrier recombination in Si-doped nanostructured hematite (α-Fe2O3) photoanodes as a function of applied bias. For unbiased hematite, this recombination exhibits a 50% decay time of ~6 ps, ~10(3) times faster than that of TiO2 under comparable conditions. Anodic bias significant...
متن کاملIonization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy.
Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH2=CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the...
متن کامل